Solved IGNOU Assignments and Question papers

Wednesday, July 17, 2019

IGNOU MTE01 SOLVED ASSIGNMENT 2019 4(a)

\int {{{\cos }^n}x = \sin x{{\cos }^{n - 1}}x + \left( {n - 1} \right){{\sin }^2}x\int {{{\cos }^{n - 2}}x} } dx
\int {{{\cos }^n}x = \sin x{{\cos }^{n - 1}}x + \left( {n - 1} \right)} \int {{{\cos }^{n - 2}}xdx}  + \int {{{\cos }^n}xdx}  - n\int {{{\cos }^n}xdx}
n\int {{{\cos }^n}x = \sin x{{\cos }^{n - 1}}x + \left( {n - 1} \right)} \int {{{\cos }^{n - 2}}xdx}
\int {{{\cos }^n}x = \frac{1}{n}\sin x{{\cos }^{n - 1}}x + \frac{{\left( {n - 1} \right)}}{n}} \int {{{\cos }^{n - 2}}xdx}


Now we evaluate

\int {{{\cos }^6}x}

Thus

\int {{{\cos }^6}x = \frac{1}{6}\sin x{{\cos }^5}x + \frac{5}{6}} \int {{{\cos }^4}xdx}
\int {{{\cos }^6}x = \frac{1}{6}\sin x{{\cos }^5}x + \frac{5}{6}} \left( {\frac{{\sin x{{\cos }^5}x}}{4} + \frac{3}{4}\int {{{\cos }^2}xdx} } \right)
\int {{{\cos }^6}x = \frac{1}{6}\sin x{{\cos }^5}x + \frac{5}{{24}}} \sin x{\cos ^3}x + \frac{{15}}{{48}}\sin x\cos x


Posted by IGNOU SOLVED PAPERS at 9:01 PM 2 comments:
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Newer Posts Older Posts Home
Subscribe to: Comments (Atom)

Mobiles From Amazon

About Me

My photo
IGNOU SOLVED PAPERS
I am Harshal. This blog caters to the of students of IGNOU. Assignment of FST gets updated here.
View my complete profile

Blog Archive

  • ►  2020 (7)
    • ►  January (7)
  • ▼  2019 (12)
    • ▼  July (1)
      • IGNOU MTE01 SOLVED ASSIGNMENT 2019 4(a)
    • ►  June (1)
    • ►  May (8)
    • ►  February (2)
  • ►  2018 (9)
    • ►  November (1)
    • ►  September (1)
    • ►  August (1)
    • ►  March (1)
    • ►  February (1)
    • ►  January (4)
  • ►  2017 (14)
    • ►  October (1)
    • ►  June (2)
    • ►  January (11)
  • ►  2016 (24)
    • ►  August (2)
    • ►  July (6)
    • ►  June (3)
    • ►  March (5)
    • ►  February (8)
Powered by Blogger.