Saturday, May 25, 2019

IGNOU MTE07 2019 SOLVED ASSIGNMENT 4(a)

\left| y \right| \le \left| x \right|

can be written as

\begin{array}{l}
 - y \le x\\
y \le x\\
y \le  - x
\end{array}

\left| y \right| > \left| x \right|

can be written as

\begin{array}{l}
 - y > x\\
y > x\\
y >  - x
\end{array}

So,

f\left( {x,y} \right)  is

\begin{array}{l}
2xy;{\rm{  - y}} \le {\rm{x, y}} \le {\rm{x, y}} \le {\rm{ - x}}\\
{\rm{( - 1/2)xy;  - y > x, y > x, y >  - x}}
\end{array}

Now,

\begin{array}{l}
{f_x}\left( {0,0} \right) =  {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h,0} \right) - f\left( {0,0} \right)}}{h}\\
 =  {\lim }\limits_{h \to 0} \frac{{0 - 0}}{h}\\
 = 0
\end{array}

\begin{array}{l}
{f_x}\left( {0,k} \right) =  {\lim }\limits_{h \to 0} \frac{{f\left( {h,k} \right) - f\left( {0,0} \right)}}{h}\\
 = \frac{{2hk - 0}}{h}\\
 = 2k
\end{array}

\begin{array}{l}
{f_{yx}}\left( {0,0} \right) =  {\lim }\limits_{k \to 0} \frac{{{f_x}\left( {0,k} \right) - {f_x}\left( {0,0} \right)}}{k}\\
 = \frac{{2k - 0}}{k}\\
 = 2
\end{array}

Again,

\begin{array}{l}
{f_y}\left( {0,0} \right) =  {\lim }\limits_{k \to 0} \frac{{f\left( {0,0 + k} \right) - f\left( {0,0} \right)}}{k}\\
 =  {\lim }\limits_{k \to 0} \frac{{0 - 0}}{k}\\
 = 0
\end{array}

\begin{array}{l}
{f_y}\left( {h,0} \right) =  {\lim }\limits_{k \to 0} \frac{{f\left( {h,k} \right) - f\left( {0,0} \right)}}{k}\\
 = \frac{{( - 1/2)hk - 0}}{k}\\
 = ( - 1/2)h
\end{array}

\begin{array}{l}
{f_{xy}}\left( {0,0} \right) =  {\lim }\limits_{k \to 0} \frac{{{f_y}\left( {h,0} \right) - {f_y}\left( {0,0} \right)}}{k}\\
 = \frac{{( - 1/2)k - 0}}{k}\\
 = ( - 1/2)
\end{array}

\begin{array}{l}
{f_{xy}}\left( {0,0} \right) = ( - 1/2)\\
{f_{yx}}\left( {0,0} \right) = 2
\end{array}

{f_{xy}}\left( {0,0} \right) \ne {f_{yx}}\left( {0,0} \right)

1 comment: