Wednesday, June 5, 2019

IGNOU MTE-01 2019 SOLVED ASSIGNMENT 3(b)

As per given condition

\int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \int\limits_0^\Pi  {\frac{{\left( {\Pi  - x} \right)\sin \left( {\Pi  - x} \right)}}{{1 + {{\cos }^2}\left( {\Pi  - x} \right)}}}
Now we can proceed


 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \int\limits_0^\Pi  {\frac{{\left( {\Pi  - x} \right)\sin x}}{{1 + {{\cos }^2}x}}}


 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \int\limits_0^\Pi  {\frac{{\left( {\Pi  - x} \right)\sin x}}{{1 + {{\cos }^2}x}}}


 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \Pi \int\limits_0^\Pi  {\frac{{\sin x}}{{1 + {{\cos }^2}x}}}  - \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}

 \Rightarrow 2\int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \Pi \int\limits_0^\Pi  {\frac{{\sin x}}{{1 + {{\cos }^2}x}}}

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \Pi /2\int\limits_0^\Pi  {\frac{{\sin x}}{{1 + {{\cos }^2}x}}}

Put cosx = t
     -sinx dx=dt
     When   x = \Pi , t=-1
                 x=0,t=1

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  =  - \Pi /2\int\limits_1^{ - 1} {\frac{{dt}}{{1 + {t^2}}}}

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \Pi /2\int\limits_{ - 1}^1 {\frac{{dt}}{{1 + {t^2}}}}

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \Pi /2\left[ {{{\tan }^{ - 1}}t} \right]_{ - 1}^1

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \Pi /2\left[ {\frac{\Pi }{4} + \frac{\Pi }{4}} \right]

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} ={\Pi ^2}/4

1 comment: