Wednesday, June 5, 2019

IGNOU MTE-01 2019 SOLVED ASSIGNMENT 3(b)

As per given condition

\int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \int\limits_0^\Pi  {\frac{{\left( {\Pi  - x} \right)\sin \left( {\Pi  - x} \right)}}{{1 + {{\cos }^2}\left( {\Pi  - x} \right)}}}
Now we can proceed


 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \int\limits_0^\Pi  {\frac{{\left( {\Pi  - x} \right)\sin x}}{{1 + {{\cos }^2}x}}}


 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \int\limits_0^\Pi  {\frac{{\left( {\Pi  - x} \right)\sin x}}{{1 + {{\cos }^2}x}}}


 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \Pi \int\limits_0^\Pi  {\frac{{\sin x}}{{1 + {{\cos }^2}x}}}  - \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}

 \Rightarrow 2\int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \Pi \int\limits_0^\Pi  {\frac{{\sin x}}{{1 + {{\cos }^2}x}}}

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}}  = \Pi /2\int\limits_0^\Pi  {\frac{{\sin x}}{{1 + {{\cos }^2}x}}}

Put cosx = t
     -sinx dx=dt
     When   x = \Pi , t=-1
                 x=0,t=1

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  =  - \Pi /2\int\limits_1^{ - 1} {\frac{{dt}}{{1 + {t^2}}}}

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \Pi /2\int\limits_{ - 1}^1 {\frac{{dt}}{{1 + {t^2}}}}

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \Pi /2\left[ {{{\tan }^{ - 1}}t} \right]_{ - 1}^1

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}  = \Pi /2\left[ {\frac{\Pi }{4} + \frac{\Pi }{4}} \right]

 \Rightarrow \int\limits_0^\Pi  {\frac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} ={\Pi ^2}/4

Thursday, May 30, 2019

IGNOU SOLVED ASSIGNMENT 2019 MTE01 Q2(b)

We have

y = {\left( {{{\sin }^{ - 1}}\left( x \right)} \right)^2}

Differentiating

\frac{{dy}}{{dx}} = \frac{{2{{\sin }^{ - 1}}\left( x \right)}}{{\sqrt {1 - {x^2}} }}

{y^'}\left( {\sqrt {1 - {x^2}} } \right) = 2{\sin ^{ - 1}}\left( x \right)

Squaring both sides

{\left( {{y^'}} \right)^2}\left( {1 - {x^2}} \right) = 4y

Differentiating again

2{y^{''}}{y^'}\left( {1 - {x^2}} \right) - 2x{\left( {{y^'}} \right)^2} = 4{y^'}

The above equation gives us

\frac{{{d^2}y}}{{d{x^2}}}\left( {1 - {x^2}} \right) - x\frac{{dy}}{{dx}} - 2 = 0

Applying Leibniz theorem,

n{C_0}{y_{n + 2}}\left( {1 - {x^2}} \right) + n{C_1}{y_{n + 1}}\left( { - 2x} \right) + n{C_2}\left( { - 2} \right){y_n} - x{y_{n + 1}} - {y_n}n{C_1} = 0

{y_{n + 2}}\left( {1 - {x^2}} \right) - 2xn{y_{n + 1}} - \frac{{\left( 2 \right)\left( n \right)\left( {n - 1} \right)}}{2}{y_n} - x{y_{n + 1}} - {y_n}n = 0


{y_{n + 2}}\left( {1 - {x^2}} \right) - x\left( {2n + 1} \right){y_{n + 1}} - {n^2}{y_n} + n{y_n} - n{y_n} = 0


{y_{n + 2}}\left( {1 - {x^2}} \right) - x\left( {2n + 1} \right){y_{n + 1}} - {n^2}{y_n} = 0




Saturday, May 25, 2019

IGNOU MTE07 2019 SOLVED ASSIGNMENT 3(a)

Put

\begin{array}{l}
x = r\cos \theta \\
y = r\sin \theta 
\end{array}

we obtain
\left| {f\left( {x,y} \right) - f\left( {0,0} \right)} \right| = \left| {\frac{{2{r^3}{{\cos }^3}\theta  + 5{r^3}{{\sin }^3}\theta }}{{{r^2}}}} \right|

=\left| {\frac{{3{r^3}{{\sin }^3}\theta }}{{{r^2}}}} \right|
\begin{array}{l}
 \le 3r{\left| {\sin \theta } \right|^3}\\
 \le 3r\\
 \le 3r\sqrt {{x^2} + {y^2}} 
\end{array}

Let  \in  > 0 be given and \delta  = (1/3) \in .

Then \left| {f\left( {x,y} \right) - f\left( {0,0} \right)} \right|< \in , when

when \sqrt {{x^2} + {y^2}}  < \delta

or

\left| {f\left( {x,y} \right) - f\left( {0,0} \right)} \right|< \in

when

\sqrt {{{(x - 0)}^2} + {{(y - 0)}^2}}  < \delta

Hence the given function is continuous at (0,0).



IGNOU MTE07 2019 SOLVED ASSIGNMENT 4(a)

\left| y \right| \le \left| x \right|

can be written as

\begin{array}{l}
 - y \le x\\
y \le x\\
y \le  - x
\end{array}

\left| y \right| > \left| x \right|

can be written as

\begin{array}{l}
 - y > x\\
y > x\\
y >  - x
\end{array}

So,

f\left( {x,y} \right)  is

\begin{array}{l}
2xy;{\rm{  - y}} \le {\rm{x, y}} \le {\rm{x, y}} \le {\rm{ - x}}\\
{\rm{( - 1/2)xy;  - y > x, y > x, y >  - x}}
\end{array}

Now,

\begin{array}{l}
{f_x}\left( {0,0} \right) =  {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h,0} \right) - f\left( {0,0} \right)}}{h}\\
 =  {\lim }\limits_{h \to 0} \frac{{0 - 0}}{h}\\
 = 0
\end{array}

\begin{array}{l}
{f_x}\left( {0,k} \right) =  {\lim }\limits_{h \to 0} \frac{{f\left( {h,k} \right) - f\left( {0,0} \right)}}{h}\\
 = \frac{{2hk - 0}}{h}\\
 = 2k
\end{array}

\begin{array}{l}
{f_{yx}}\left( {0,0} \right) =  {\lim }\limits_{k \to 0} \frac{{{f_x}\left( {0,k} \right) - {f_x}\left( {0,0} \right)}}{k}\\
 = \frac{{2k - 0}}{k}\\
 = 2
\end{array}

Again,

\begin{array}{l}
{f_y}\left( {0,0} \right) =  {\lim }\limits_{k \to 0} \frac{{f\left( {0,0 + k} \right) - f\left( {0,0} \right)}}{k}\\
 =  {\lim }\limits_{k \to 0} \frac{{0 - 0}}{k}\\
 = 0
\end{array}

\begin{array}{l}
{f_y}\left( {h,0} \right) =  {\lim }\limits_{k \to 0} \frac{{f\left( {h,k} \right) - f\left( {0,0} \right)}}{k}\\
 = \frac{{( - 1/2)hk - 0}}{k}\\
 = ( - 1/2)h
\end{array}

\begin{array}{l}
{f_{xy}}\left( {0,0} \right) =  {\lim }\limits_{k \to 0} \frac{{{f_y}\left( {h,0} \right) - {f_y}\left( {0,0} \right)}}{k}\\
 = \frac{{( - 1/2)k - 0}}{k}\\
 = ( - 1/2)
\end{array}

\begin{array}{l}
{f_{xy}}\left( {0,0} \right) = ( - 1/2)\\
{f_{yx}}\left( {0,0} \right) = 2
\end{array}

{f_{xy}}\left( {0,0} \right) \ne {f_{yx}}\left( {0,0} \right)